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Evaluation of Ki5o (20) 

Value X 1031 v B D 

- .723828 -1.00 3.65 .0025 
.269938 -1.20 4.00 " 
.274077 -1.40 4.80 " 
.274078 -1.48 5.45 " 

-1.50 5.60 .005 
-1.52 6.00 " 
-1.54 6.50 " 
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Mixed Algebraic-Exponential Interpolation 
Using Finite Differences 

By J. W. Layman 

The use of finite differences in exponential polyniomial interpolation was intro- 
duced in [1], where an algorithm was developed which triangularizes the system of 
equations that determines the coefficients in the interpolating exponential poly- 
nomial. In the present note we show that a similar finite-difference algorithm also 
exists for interpolation by a mixed algebraic-exponential polynomial of the form 

N mn 

( 1 ) P (x) = E E anx nn 
n-1 m=O 

for x = 0, 1, 2, **, E (Mn + 1)- 1. The symbol x(m) represents the factorial 
power function x(x - 1) * * (x - m + 1). 

We require the basic difference operations E and A and, in addition, the diagonal 
difference S defined by Sf(x) = Axf(O). The diagonal difference is more precisely 
defined in [11 and certain difficulties in interpretation are resolved there. These arise 
when taking higher-order diagonal differences by iteration, Snf(x) = SSn-lf(x). 

The following properties and formulas involving the diagonal-difference opera- 
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tion follow more or less directly from the definition. Proofs are left to the reader. 
S[af(x) + bg(x)] = aSf(x) + bSg(x), 

Smf(x) = (E - m)xf(O), 
Sn[x(r)f(x)] = x(n)E-rSnf(k + r) 

Sm[nxf(x)] = nxSml Inf(x), if n divides m, 
S[x ()ax] = X -ar(a _ )x-r 

For consistency we define x(r)Ox-r to be zero for x < r, r! for x = r, zero for x > r. 
Rather than developing the triangularization procedure for the general alge- 

braic-exponential polynomial in (1), we will restrict ourselves to the special case of 
N = 2 with ml =M2 = 2. Then we may write 

(2) P(x) = a, + bix + clx(2) + (a2 + b2x + C2X (2)) 2x. 

We now apply the operators E and S in the appropriate sequence so that the co- 
efficients are eliminated one-by-one from left to right to obtain the following: 

f(x) = a, + bix + CiX(2) + (a2 + b2x + C2X(2))2x, 

Sf(x) = aiOx + bjxOx-l + cx(2)0n-2 + a2 + 2b2x + 22c2x (2) 

ESf(x) = bi(x + 1)Ox + c1(x + 1)(2)0x-1 + 2b2(x + 1) + 4c2(x + 1)(2) 

E2Sf(x) = Ci(x + 2)(2)Ox + 2b2(x + 2) + 4c2(x + 2)(2), 
E3Sf(x) = a2 + 2b2(x + 3) + 4c2[x(2) + 8x + 12], 

SE3Sf(x) = a20x + 2b2XOxl + 6b20x + 4c2[(x + 1) (2) 

+ 6xOx-1 + 6 .Ox] 
ESE3Sf(x) = 2b2(x + 1)Ox + 4c2[(x + 1)(2)Ox-I 

+ 6(x + l.)Ox], 
E2SE3Sf(x) = 4c2(x + 2) (2)0x . 

This system is triangular for any x; however, the snmallest number of data points 
is required if we take x = 0. Several redundant equations can be eliminated to 
yield the following system: 

Sf(0) = a, + a2 , 
ESf(O) = bi + a2 + 2b2, 

E2Sf(O) = 2c, + a2 + 4b2 + 8c2, 
(3) SE3Sf(O) = a2 + 6b2 + 24c2, 

ESE3Sf(O) = 2b2 + 24c2, 
E2SE3Sf(O) = 8C2. 

For any given instance of the general algebraic-exponential polynomial we pro- 
ceed in a similar manner. We first apply the operator S, followed by n + 1 suc- 
cessive applications of E, where n is the degree of A 1 (x), then again apply S, followed 
by m + 1 successive applications of E where m is the degree of A2(x), * * . etc. We 
evaluate these derived polynomials at x = 0 and discard redundant equations to 
obtain the appropriate triangularization scheme. 

Consideration of the diagonal-difference operation S shows that Sf(x) is simply 
the diagonal of so-called leading differences, i.e., the diagonal of differences which 
passes through f(O). The function SE3Sf(x), for example, is then obtained by cal- 
culating the diagonal of leading differences of E3Sf(x), that is, the diagonal of dif- 
ferences of Sf(x) through Sf(3). A typical example is shown below. 
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x f(x) Sf(x) 

0 1 1 1 = Sf(0) 
1 -1 -2 -2 -2 = ESf(0) 
2 2 3 5 5 5 = E2Sf(0) 
3 1 -1 -4 -9 -9 -9 = SE3Sf(0) 
4 -8 -9 -8 -4 5 5 14 14 = ESE3Sf(0) 
5 3 11 20 28 32 27 27 22 8 8 = E2SE3Sf(0) 

Substituting the values of Sf(0), *, E2SE3Sf(O) from the tabulation into (3) 
yields a triangular system which is easily solved to obtain: 

a, = 42 bi = 11, cl = 10, 
a2 = -3, b2 = -5, C2 = 1. 

Hence the algebraic-exponential polynomial of the form given in Eq. (2) which fits 
the given data is 

P(x) = 4 + lix + J0x(2) + [-3 - 5x + x(2)]2X. 

The principal advantage of the present method is just that of any finite-differ- 
ence interpolation method, that is, the systematic handling of the given data. For 
example, Gauss elimination can be used to give, as the fifth equation of (3), 

2b2 + 24c2 = f4- 5f3 + 9f2 - 7fl + 2fo, 

which the present method gives as 2b2 + 24c2 = ESE3Sf0, a result which clearly 
indicates a systematic difference-table computation procedure. Furthermore, an 
analysis of the numerical example shows that Gauss elimination requires 15 addi- 
tions (subtractions) and 12 multiplications involving the given data fo, fi, ..., fs, 
to triangularize the coefficient matrix, whereas the present method requires 18 sub- 
tractions. 

It may be pointed out that the present method leads to a strictly diagonal sys- 
tem when no exponential factors ax appear, equivalent to the Gregory-Newton 
Forward Interpolation method. When no algebraic factors appear we obtain the 
exponential polynomial method of [1]. 

For a remainder analysis, when approximating functions of known properties, 
see a paper by Gori [2]. 
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