Value $\times 10^{34}$	Evaluation of $K_{\text {ijo }}$ (20)		
	v	B	D
-. 723828	-1.00	$\overline{3.65}$. 0025
. 269938	-1.20	4.00	"
. 274077	-1.40	4.80	"
. 274078	-1.48	5.45	"
"	-1.50	5.60	. 005
",	-1.52	6.00	"
"	-1.54	6.50	"

Acknowledgement. This work was supported by the Atomic Energy Commission under Contract No. AT(30-1)-2772 which included access to the CDC-6600 facility at the Courant Institute for Mathematical Sciences at New York University.

Lehigh University

Bethlehem, Pennsylvania
E. I. Du Pont Nemours

Wilmington, Delaware 19898

1. J. M. Jackson \& N. F. Mott, "Energy exchange between inert gas atoms and a solid surface," Proc. Roy. Soc. London Ser. A, v. 137, 1932, pp. 703-717.

Mixed Algebraic-Exponential Interpolation Using Finite Differences

By J. W. Layman

The use of finite differences in exponential polynomial interpolation was introduced in [1], where an algorithm was developed which triangularizes the system of equations that determines the coefficients in the interpolating exponential polynomial. In the present note we show that a similar finite-difference algorithm also exists for interpolation by a mixed algebraic-exponential polynomial of the form

$$
\begin{equation*}
P(x)=\sum_{n=1}^{N} \sum_{m=0}^{m_{n}} a_{n m} x^{(m)} n^{x} \tag{1}
\end{equation*}
$$

for $x=0,1,2, \cdots, \sum_{n=1}^{N}\left(m_{n}+1\right)-1$. The symbol $x^{(m)}$ represents the factorial power function $x(x-1) \cdots(x-m+1)$.

We require the basic difference operations E and Δ and, in addition, the diagonal difference S defined by $S f(x)=\Delta^{x} f(0)$. The diagonal difference is more precisely defined in [1] and certain difficulties in interpretation are resolved there. These arise when taking higher-order diagonal differences by iteration, $S^{n} f(x)=S S^{n-1} f(x)$.

The following properties and formulas involving the diagonal-difference opera-
tion follow more or less directly from the definition. Proofs are left to the reader.

$$
\begin{aligned}
S[a f(x)+b g(x)] & =a S f(x)+b S g(x), \\
S^{m} f(x) & =(E-m)^{x} f(0), \\
S^{n}\left[x^{(r)} f(x)\right] & =x^{(n)} E^{-r} S^{n} f(k+r), \\
S^{m}\left[n^{x} f(x)\right] & =n^{x} S^{m / n} f(x), \text { if } n \text { divides } m, \\
S\left[x^{(r)} a^{x}\right] & =x^{(r)} a^{r}(a-1)^{x-r} .
\end{aligned}
$$

For consistency we define $x^{(r)} 0^{x-r}$ to be zero for $x<r, r$! for $x=r$, zero for $x>r$.
Rather than developing the triangularization procedure for the general alge-braic-exponential polynomial in (1), we will restrict ourselves to the special case of $N=2$ with $m_{1}=m_{2}=2$. Then we may write

$$
\begin{equation*}
P(x)=a_{1}+b_{1} x+c_{1} x^{(2)}+\left(a_{2}+b_{2} x+c_{2} x^{(2)}\right) 2^{x} \tag{2}
\end{equation*}
$$

We now apply the operators E and S in the appropriate sequence so that the coefficients are eliminated one-by-one from left to right to obtain the following:

$$
\begin{array}{rlrl}
f(x) & = & a_{1}+b_{1} x+c_{1} x^{(2)}+\left(a_{2}+b_{2} x+c_{2} x^{(2)}\right) 2^{x}, \\
S f(x) & =a_{1} 0^{x}+b_{1} x 0^{x-1}+c_{1} x^{(2)} 0^{n-2}+a_{2}+2 b_{2} x+2^{2} c_{2} x^{(2)} \\
E S f(x) & = & b_{1}(x+1) 0^{x}+c_{1}(x+1)^{(2)} 0^{x-1}+2 b_{2}(x+1)+4 c_{2}(x+1)^{(2)}, \\
E^{2} S f(x) & = & c_{1}(x+2)^{(2)} 0^{x}+2 b_{2}(x+2)+4 c_{2}(x+2)^{(2)}, \\
E^{3} S f(x) & = & a_{2}+2 b_{2}(x+3)+4 c_{2}\left[x^{(2)}+8 x+12\right], \\
S E^{3} S f(x) & = & a_{2} 0^{x}+2 b_{2} x 0^{x-1}+6 b_{2} 0^{x}+4 c_{2}\left[(x+1)^{(2)}\right. \\
& & \left.+6 x 0^{x-1}+6 \cdot 0^{x}\right], \\
E S E^{3} S f(x) & = & & 2 b_{2}(x+1) 0^{x}+4 c_{2}\left[(x+1)^{(2)} 0^{x-1}\right. \\
& & \left.+6(x+1) 0^{x}\right], \\
E^{2} S E^{3} S f(x) & = & & 4 c_{2}(x+2)^{(2)} 0^{x} .
\end{array}
$$

This system is triangular for any x; however, the smallest number of data points is required if we take $x=0$. Several redundant equations can be eliminated to yield the following system:

$$
\begin{array}{rlrl}
S f(0) & =a_{1} & +a_{2}, \\
E S f(0) & = & b_{1} & +a_{2}+2 b_{2}, \\
E^{2} S f(0) & = & 2 c_{1}+a_{2}+4 b_{2}+8 c_{2}, \\
S E^{3} S f(0) & = & & a_{2}+6 b_{2}+24 c_{2}, \tag{3}\\
E S E^{3} S f(0) & & & 2 b_{2}+24 c_{2}, \\
E^{2} S E^{3} S f(0) & & & 8 c_{2} .
\end{array}
$$

For any given instance of the general algebraic-exponential polynomial we proceed in a similar manner. We first apply the operator S, followed by $n+1$ successive applications of E, where n is the degree of $A_{1}(x)$, then again apply S, followed by $m+1$ successive applications of E where m is the degree of $A_{2}(x), \cdots$ etc. We evaluate these derived polynomials at $x=0$ and discard redundant equations to obtain the appropriate triangularization scheme.

Consideration of the diagonal-difference operation S shows that $S f(x)$ is simply the diagonal of so-called leading differences, i.e., the diagonal of differences which passes through $f(0)$. The function $S E^{3} S f(x)$, for example, is then obtained by calculating the diagonal of leading differences of $E^{3} S f(x)$, that is, the diagonal of differences of $S f(x)$ through $S f(3)$. A typical example is shown below.

	$f(x)$						$S f(x)$			
0	1						1			$1=S f(0)$
1	-1	-2					-2			$-2=\operatorname{ESf}(0)$
2	2	3	5				5			$5=E^{2} S f(0)$
3	1	-1	-4	-9			-9			$-9=S E^{3} S f(0)$
4	-8	-9	-8	-4	5		5	14		$14=E S E^{3} S f(0)$
5	3	11	20	28	32	27	27	22	8	$8=E^{2} S E^{3} S f(0)$

Substituting the values of $S f(0), \cdots, E^{2} S E^{3} S f(0)$ from the tabulation into (3) yields a triangular system which is easily solved to obtain:

$$
\begin{array}{lll}
a_{1}=4, & b_{1}=11, & c_{1}=10 \\
a_{2}=-3, & b_{2}=-5, & c_{2}=1
\end{array}
$$

Hence the algebraic-exponential polynomial of the form given in Eq. (2) which fits the given data is

$$
P(x)=4+11 x+10 x^{(2)}+\left[-3-5 x+x^{(2)}\right] 2^{x} .
$$

The principal advantage of the present method is just that of any finite-difference interpolation method, that is, the systematic handling of the given data. For example, Gauss elimination can be used to give, as the fifth equation of (3),

$$
2 b_{2}+24 c_{2}=f_{4}-5 f_{3}+9 f_{2}-7 f_{1}+2 f_{0}
$$

which the present method gives as $2 b_{2}+24 c_{2}=E S E^{3} S f_{0}$, a result which clearly indicates a systematic difference-table computation procedure. Furthermore, an analysis of the numerical example shows that Gauss elimination requires 15 additions (subtractions) and 12 multiplications involving the given data $f_{0}, f_{1}, \cdots, f_{5}$, to triangularize the coefficient matrix, whereas the present method requires 18 subtractions.

It may be pointed out that the present method leads to a strictly diagonal system when no exponential factors a^{x} appear, equivalent to the Gregory-Newton Forward Interpolation method. When no algebraic factors appear we obtain the exponential polynomial method of [1].

For a remainder analysis, when approximating functions of known properties, see a paper by Gori [2].

Virginia Polytechnic Institute
Blacksburg, Virginia 24061

1. J. W. Layman, "A finite-difference exponential approximation method," Math. Comp., v. 18, 1964, pp. 113-118.
2. LaURA Gori, "Una generalizzazione della formula di interpolazione di Lagrange-Hermite," Ricerche Mat., v. 9, 1960, pp. 242-247. MR 27 \#1758.
