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Evaluation of K 0 (20)

Value X 1034 v B D
— .723828 —1.00 3.65 .0025
.269938 —1.20 4.00 "
.274077 —1.40 4.80 ”
.274078 —1.48 5.45 "

” —1.52 6.00 ”
6.50 "

? —1.54
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Mixed Algebraic-Exponential Interpolation
Using Finite Differences

By J. W. Layman

The use of finite differences in exponential polynomial interpolation was intro-
duced in [1], where an algorithm was developed which triangularizes the system of
equations that determines the coefficients in the interpolating exponential poly-
nomial. In the present note we show that a similar finite-difference algorithm also
exists for interpolation by a mixed algebraic-exponential polynomial of the form

N ™
(0 Px) = Z:l . Ao N7
forx=0,1,2, ---, >4, (m, + 1) — 1. The symbol z represents the factorial
power function z(x — 1) - -(x — m + 1).

We require the basic difference operations E and A and, in addition, the diagonal
difference S defined by Sf(z) = A*f(0). The diagonal difference is more precisely
defined in [1] and certain difficulties in interpretation are resolved there. These arise
when taking higher-order diagonal differences by iteration, S*f(z) = SS*~f(x).

The following properties and formulas involving the diagonal-difference opera-
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tion follow more or less directly from the definition. Proofs are left to the reader.
Slaf(z) + bg(@)] = aSf(x) + bSy(x) ,
S7f(x) = (E — m)*f(0) ,
Sz f(2)] = e WESf(k + 1),
S™nzf(x)] = n=S™""f(x), if n divides m ,
Sz a?] = xMa(a — 1)>.

For consistency we define (0= to be zero for x < r, r! for x = r, zero fora > r.

Rather than developing the triangularization procedure for the general alge-
braic-exponential polynomial in (1), we will restrict ourselves to the special case of
N = 2 with m; = me = 2. Then we may write

(2) P(x) = a1+ bz + c12® + (a2 + bax + cox®)27 .

We now apply the operators E and S in the appropriate sequence so that the co-
efficients are eliminated one-by-one from left to right to obtain the following:

f@) = a1+ bix 4+ ciz® + (a2 + box + cax®)27
8f(x) = a10° + b0~ + ¢,z ®0™2 + as + 2oz + e,

ESf(z) = bix + 1)0% + ei(x + 1) @01 + 2bo(x + 1) + 4ea(z + 1)@,
E2Sf(x) = ci(x + 2)®0% + 2bs(x + 2) + 4deo(z + 2)@
E}Sf(x) = as + 2b2(x + 3) + 4eoz® + 8z + 12],
SE*Sf(x) = @90 + 2bs207! + 6b20% + 4deof(x + 1)@
-+ 6201 + 6-07],
ESE}Sf(x) = 2ba(z + 1)07 + 4eof(x + 1) ®0=!
+ 6(x + 1)07],
E2SE*Sf(x) = 4co(x + 2) @07,

This system is triangular for any «; however, the smallest number of data points
is required if we take x = 0. Several redundant equations can be eliminated to
yield the following system:

Sf(()) = a1 + ao,
ESf(O) = b1 + a2 + 2b, s

EZSf(O) = 2¢q + a2 + 4b2 + 8¢, y

3) SESf(0) = as + 6by + 24c,
ESE3Sf(O) = 2be + 24c, y

E2SE*Sf(0) = 8ca .

For any given instance of the general algebraic-exponential polynomial we pro-
ceed in a similar manner. We first apply the operator S, followed by n + 1 suc-
cessive applications of £, where n is the degree of A1(z), then again apply S, followed
by m 4+ 1 successive applications of E where m is the degree of A.(2), - - - etc. We
evaluate these derived polynomials at = 0 and discard redundant equations to
obtain the appropriate triangularization scheme.

Consideration of the diagonal-difference operation S shows that Sf(x) is simply
the diagonal of so-called leading differences, i.e., the diagonal of differences which
passes through f(0). The function SE?*Sf(x), for example, is then obtained by cal-
culating the diagonal of leading differences of E*Sf(x), that is, the diagonal of dif-
ferences of Sf(x) through Sf(3). A typical example is shown below.
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z  fl@) Sf(x)
0 1 1 1 = §f(0)
1 -1 -2 -2 —2 = ESf(0)
2 2 3 5 5 5 = E2§f(0)
3 1 -1 -4 -9 -9 —9 = SE3S5/(0)
4 -8 -9 -8 —4 5 5 14 14 = ESE?Sf(0)
5 3 11 20 28 32 27 27 22 8 8 = E2SE3Sf(0)
Substituting the values of Sf(0), ---, E2SE?*Sf(0) from the tabulation into (3)
yields a triangular system which is easily solved to obtain:
a1=4, b1=11, 01=10,
a2=—3, b2=—5, co=1.

Hence the algebraic-exponential polynomial of the form given in Eq. (2) which fits
the given data is

P(@) = 4 + Ul + 102® + [—3 — 5z + 2®]27

The principal advantage of the present method is just that of any finite-differ-
ence interpolation method, that is, the systematic handling of the given data. For
example, Gauss elimination can be used to give, as the fifth equation of (3),

21)2 + 2402 =f4 —_— 5f3 + 9f2 - 7f1 + 2f07

which the present method gives as 2b, + 24c. = ESE*Sf,, a result which clearly
indicates a systematic difference-table computation procedure. Furthermore, an
analysis of the numerical example shows that Gauss elimination requires 15 addi-
tions (subtractions) and 12 multiplications involving the given data fo, f1, - - -, fs,
to triangularize the coefficient matrix, whereas the present method requires 18 sub-
tractions.

It may be pointed out that the present method leads to a strictly diagonal sys-
tem when no exponential factors a* appear, equivalent to the Gregory-Newton
Forward Interpolation method. When no algebraic factors appear we obtain the
exponential polynomial method of [1].

For a remainder analysis, when approximating functions of known properties,
see a paper by Gori [2].
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