		Evaluation of K_{i50}	(20)
$Value imes 10^{34}$	v	В	D
723828	-1.00	$\overline{3.65}$.0025
.269938	-1.20	4.00	"
.274077	-1.40	4.80	"
.274078	-1.48	5.45	"
"	-1.50	5.60	.005
"	-1.52	6.00	"
"	-1.54	6.50	"

Acknowledgement. This work was supported by the Atomic Energy Commission under Contract No. AT(30-1)-2772 which included access to the CDC-6600 facility at the Courant Institute for Mathematical Sciences at New York University.

Lehigh University Bethlehem, Pennsylvania

E. I. Du Pont Nemours Wilmington, Delaware 19898

1. J. M. JACKSON & N. F. MOTT, "Energy exchange between inert gas atoms and a solid surface," Proc. Roy. Soc. London Ser. A, v. 137, 1932, pp. 703-717.

Mixed Algebraic-Exponential Interpolation Using Finite Differences

By J. W. Layman

The use of finite differences in exponential polynomial interpolation was introduced in [1], where an algorithm was developed which triangularizes the system of equations that determines the coefficients in the interpolating exponential polynomial. In the present note we show that a similar finite-difference algorithm also exists for interpolation by a mixed algebraic-exponential polynomial of the form

(1)
$$P(x) = \sum_{n=1}^{N} \sum_{m=0}^{m_n} a_{nm} x^{(m)} n^2$$

for $x = 0, 1, 2, \dots, \sum_{n=1}^{N} (m_n + 1) - 1$. The symbol $x^{(m)}$ represents the factorial power function $x(x - 1) \cdots (x - m + 1)$.

We require the basic difference operations E and Δ and, in addition, the diagonal difference S defined by $Sf(x) = \Delta^x f(0)$. The diagonal difference is more precisely defined in [1] and certain difficulties in interpretation are resolved there. These arise when taking higher-order diagonal differences by iteration, $S^n f(x) = SS^{n-1}f(x)$.

The following properties and formulas involving the diagonal-difference opera-

Received April 28, 1966. Revised December 5, 1966.

tion follow more or less directly from the definition. Proofs are left to the reader.

$$\begin{split} S[af(x) + bg(x)] &= aSf(x) + bSg(x) ,\\ S^m f(x) &= (E - m)^x f(0) ,\\ S^n[x^{(r)}f(x)] &= x^{(n)} E^{-r} S^n f(k + r) ,\\ S^m[n^x f(x)] &= n^x S^{m/n} f(x) , \text{ if } n \text{ divides } m ,\\ S[x^{(r)} a^x] &= x^{(r)} a^r (a - 1)^{x-r} . \end{split}$$

For consistency we define $x^{(r)}0^{x-r}$ to be zero for x < r, r! for x = r, zero for x > r.

Rather than developing the triangularization procedure for the general algebraic-exponential polynomial in (1), we will restrict ourselves to the special case of N = 2 with $m_1 = m_2 = 2$. Then we may write

(2)
$$P(x) = a_1 + b_1 x + c_1 x^{(2)} + (a_2 + b_2 x + c_2 x^{(2)}) 2^x$$

We now apply the operators E and S in the appropriate sequence so that the coefficients are eliminated one-by-one from left to right to obtain the following:

$$\begin{split} f(x) &= a_1 + b_1 x + c_1 x^{(2)} + (a_2 + b_2 x + c_2 x^{(2)}) 2^x ,\\ Sf(x) &= a_1 0^x + b_1 x 0^{x-1} + c_1 x^{(2)} 0^{n-2} + a_2 + 2b_2 x + 2^2 c_2 x^{(2)} ,\\ ESf(x) &= b_1 (x+1) 0^x + c_1 (x+1)^{(2)} 0^{x-1} + 2b_2 (x+1) + 4c_2 (x+1)^{(2)} ,\\ E^2 Sf(x) &= c_1 (x+2)^{(2)} 0^x + 2b_2 (x+2) + 4c_2 (x+2)^{(2)} ,\\ E^3 Sf(x) &= a_2 + 2b_2 (x+3) + 4c_2 [x^{(2)} + 8x + 12] ,\\ SE^3 Sf(x) &= a_2 0^x + 2b_2 x 0^{x-1} + 6b_2 0^x + 4c_2 [(x+1)^{(2)} + 6x 0^{x-1} + 6 \cdot 0^x] ,\\ ESE^3 Sf(x) &= 2b_2 (x+1) 0^x + 4c_2 [(x+1)^{(2)} 0^{x-1} + 6(x+1) 0^x] ,\\ ESE^3 Sf(x) &= 2b_2 (x+1) 0^x + 4c_2 [(x+1)^{(2)} 0^{x-1} + 6(x+1) 0^x] ,\\ E^2 SE^3 Sf(x) &= 4c_2 (x+2)^{(2)} 0^x . \end{split}$$

This system is triangular for any x; however, the smallest number of data points is required if we take x = 0. Several redundant equations can be eliminated to yield the following system:

$$Sf(0) = a_1 + a_2,$$

$$ESf(0) = b_1 + a_2 + 2b_2,$$

$$E^2Sf(0) = 2c_1 + a_2 + 4b_2 + 8c_2,$$

$$SE^3Sf(0) = a_2 + 6b_2 + 24c_2,$$

$$ESE^3Sf(0) = 2b_2 + 24c_2,$$

$$ESE^3Sf(0) = 2b_2 + 24c_2,$$

$$ESE^3Sf(0) = 8c_2.$$

For any given instance of the general algebraic-exponential polynomial we proceed in a similar manner. We first apply the operator S, followed by n + 1 successive applications of E, where n is the degree of $A_1(x)$, then again apply S, followed by m + 1 successive applications of E where m is the degree of $A_2(x)$, \cdots etc. We evaluate these derived polynomials at x = 0 and discard redundant equations to obtain the appropriate triangularization scheme.

Consideration of the diagonal-difference operation S shows that Sf(x) is simply the diagonal of so-called leading differences, i.e., the diagonal of differences which passes through f(0). The function $SE^3Sf(x)$, for example, is then obtained by calculating the diagonal of leading differences of $E^3Sf(x)$, that is, the diagonal of differences of Sf(x) through Sf(3). A typical example is shown below.

x	f(x)						Sf(x)			
0	1						1			1 = Sf(0)
1	-1	-2					-2			-2 = ESf(0)
2	2	3	5				5			$5 = E^2 Sf(0)$
3	1	-1	-4	-9			-9			$-9 = SE^3Sf(0)$
4	-8	-9	-8	-4	5		5	14		$14 = ESE^{3}Sf(0)$
5	3	11	20	28	32	27	27	22	8	$8 = E^2 S E^3 S f(0)$

Substituting the values of $Sf(0), \dots, E^2SE^3Sf(0)$ from the tabulation into (3) yields a triangular system which is easily solved to obtain:

$a_1 = 4$,	$b_1 = 11,$	$c_1 = 10$,
$a_2 = -3$,	$b_2 = -5$,	$c_2 = 1$.

Hence the algebraic-exponential polynomial of the form given in Eq. (2) which fits the given data is

 $P(x) = 4 + 11x + 10x^{(2)} + [-3 - 5x + x^{(2)}]2^{x}.$

The principal advantage of the present method is just that of any finite-difference interpolation method, that is, the systematic handling of the given data. For example, Gauss elimination can be used to give, as the fifth equation of (3),

$$2b_2 + 24c_2 = f_4 - 5f_3 + 9f_2 - 7f_1 + 2f_0,$$

which the present method gives as $2b_2 + 24c_2 = ESE^3Sf_0$, a result which clearly indicates a systematic difference-table computation procedure. Furthermore, an analysis of the numerical example shows that Gauss elimination requires 15 additions (subtractions) and 12 multiplications involving the given data f_0, f_1, \dots, f_5 , to triangularize the coefficient matrix, whereas the present method requires 18 subtractions.

It may be pointed out that the present method leads to a strictly diagonal system when no exponential factors a^x appear, equivalent to the Gregory-Newton Forward Interpolation method. When no algebraic factors appear we obtain the exponential polynomial method of [1].

For a remainder analysis, when approximating functions of known properties, see a paper by Gori [2].

Virginia Polytechnic Institute Blacksburg, Virginia 24061

1. J. W. LAYMAN, "A finite-difference exponential approximation method," Math. Comp., v.

19. 113-118.
 1964, pp. 113-118.
 LAURA GORI, "Una generalizzazione della formula di interpolazione di Lagrange-Hermite," Ricerche Mat., v. 9, 1960, pp. 242-247. MR 27 #1758.

500